بررسی ژئوشیمیایی و تطابق نفت- نفت مخزن سروک و نفت- سنگ منشاء بخش احمدی با استفاده از داده‌های بیومارکری اجزاء اشباع و آروماتیک در یکی از میادین جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه خوارزمی، تهران

2 پژوهشکده ازدیاد برداشت مخازن نفت و گاز، شرکت ملی نفت ایران

3 گروه شیمی آلی و پلیمر، دانشکده شیمی، دانشگاه خوارزمی، تهران، ایران

چکیده

تطابق نفت‌ها با یکدیگر و با سنگهای منشاء، نقشی اساسی در بررسی سیستم نفتی حوضههای رسوبی دارد. در این مقاله تعداد چهار نمونه نفتی (#A03#, A04#, A09#, A13) از مخزن سروک و دو نمونه سنگ منشاء (#SO1 و #SO2) مربوط به بخش احمدی سازند سروک در یکی از میادین جنوب‌غرب ایران با استفاده از دستگاه پیرولیز راک ایول، کروماتوگرافی ستونی، دستگاه‌های کروماتوگرافی گازی (GC) و کروماتوگرافی گازی- طیف‌سنجی جرمی (GC-MS)، مورد ارزیابی ژئوشیمیایی و مطالعات بیومارکری قرار گرفته‌اند. بررسی مقاطع نازک میکروسکوپی و داده‌های راک ایول نمونه‌های سنگ منشاء بخش احمدی سازند سروک در کنار مطالعات بیومارکری، تأییدکننده شرایط عمیق دریایی و کروژن نوع II است. مطالعه و تعیین درصد برش‌های اشباع، آروماتیک، رزین و آسفالتن نمونه‌های مورد مطالعه بیانگر ترکیب پارافینی و بلوغ حرارتی تقریباً بالای نمونه‌های نفت و ترکیب نفتنی برای نمونه بیتومن حاصل از سنگ منشاء احتمالی در میدان نفتی مورد مطالعه است. بررسی‌های ژئوشیمیایی نشان میدهد که سنگ منشاء نمونه‌های نفتی دارای ترکیب لیتولوژیکی کربناته- شیلی بوده که در یک محیط رسوبی دریایی احیایی تشکیل شده‌اند. براساس نسبت‌های بیومارکری مشخص شد که نمونه‌های مورد مطالعه از بلوغ حرارتی بالا و حد واسطی برخوردارند. ترسیم نمودار ستاره‌ای نسبت آلکان‌های نرمال و نسبت‌های بیومارکری، دیاگرام مثلثی C27-C28-C29 استران، بیومارکرهای CPI ،Pr/(Pr+Ph) ،C32 S/(S+R) C30 (βα/αβ+βα) ،C23 TT/C30 αβ Hopane و Tm/Ts نشان می‌دهد که بین نمونه سنگ منشاء و نفتهای #A13 ،#A04 و #A03 تا حدودی قرابت در بیومارکرها وجود داشته و می‌تواند بیانگر ارتباط ژنتیکی بین نمونه‌ها باشد. نمونه نفت #A09 با فاصله بیشتر نسبت به سایر نمونه‌ها بیانگر حضور بیش از یک خانواده نفتی در مخزن سروک میدان نفتی مورد مطالعه است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Geochemical Investigation, Oil-Oil Correlation of Sarvak Reservoir and Oil-Source Correlation of Ahmadi Member with Saturate and Aromatic Biomarker Data in an Oilfield from Southwest of Iran

نویسندگان [English]

  • Milad Soleimani 1
  • Elham Asadi 1
  • Seyed Ali Moallemi 2
  • Azizollah Habibi 3
1 Department of Geology, Faculty of Earth Sciences, Kharazmi University, Tehran
2 IOR/EOR Institute for Oil and Gas Reservoirs, Tehran, Iran
3 Organic and Polymer Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran
چکیده [English]

Correlation of oils to each other and to their source rock is an important factor in defining a basin’s petroleum system. In this paper, 4 oil samples (#A13, #A09, #A04, #A03) from Sarvak reservoir and 2 source rocks (#SO1, #SO2) from Ahmadi member of Sarvak Formation in an oil field at southwest of Iran, were evaluated geochemically with Rock-Eval pyrolysis, column chromatography, gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS) instruments. Moreover, thin section studies and Rock-Eval analysis along with biomarker data on source rock of Ahmadi member from Sarvak Formation indicate deep marine condition and kerogen type II. Determination of saturate, aromatic, resin and asphaltene fractions on study samples show paraffinic composition with nearly high thermal maturity for oils and naphtenic composition for extracted bitumen of probable source rock in studied oil fields. Geochemical studies indicate that the source rock of oil samples have carbonate-shale lithology in an anoxic marine environment. The biomarker ratios also show the medium to high thermal maturity of studied samples. Finally, star diagram of normal alkane and biomarker ratios, triangle diagram of C27-C28-C29 steran, variation of CPI, Pr/(Pr+Ph), C32 S/(S+R), C30 (βα/αβ+βα), C23 TT/C30 αβ Hopane and Tm/Ts versus calculated vitrinite reflex indicate that there are nearly biomarker similarities between #A03, #A04 and #A13 and source rock and can show genetic relationship. While #A09 oil sample with more space related to other samples might indicate more than one oil families in Sarvak reservoir of studied oil fields.
 

کلیدواژه‌ها [English]

  • Oil-Oil Correlation
  • Sarvak Reservoir
  • Organic Geochemistry
  • Oil Family
  • Ahmadi Member
[1]. Mehmandosti E. A., Adabi M. H., Bowden S. A. and Alizadeh B., “Geochemical investigation, oil–oil and oil–source rock correlation in the Dezful Embayment, Marun Oilfield, Zagros, Iran,” Marine and Petroleum Geology., No. 68, pp. 648-663, 2015.##
[2]. Bordenave M. L. and Hegre J. A., “Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems,” Geological Society, London, Special Publications, Vol. 330, No. 1, pp. 291-353, 2010. ##
[3]. Mashhadi Z. S. and Rabbani A. R., “Organic geochemistry of crude oils and cretaceous source rocks in the Iranian sector of the Persian Gulf: an oil–oil and oil–source rock correlation study,” International Journal of Coal Geology, No. 146, pp. 118-144, 2015. ##
[4]. Mirshahani M., Kassaie M. and Zeynalzadeh A., “Source rock evaluation of the cenomanian middle Sarvak (Ahmadi) formation in the Iranian sector of the Persian Gulf,” Journal of Petroleum Science and Technology, Vol. 7, No. 3, pp. 100-116, 2017. ##
[5]. Alizadeh B., Alipour M., Chehrazi A. and Mirzaie SH., “Chemometric classification and organic geochemical characterization of oils in the Southern Persian Gulf Basin,” Organic Geochemistry, Vol. 111, pp.67-81, 2017. ##
[6]. Alipour M., Alizadeh B. and Chehrazi A., “A thermal maturity analysis of effective Cretaceous petroleum system in the Southern Persian Gulf basin,” Iranian Journal of Oil & Gas Science and Technology, Vol. 6, pp. 1-17. 2017. ##
[7]. Alipour M., Alizadeh B., Chehrazi A. and Mirzaie SH., “Combining biodegradation in 2D petroleum system models; application to the Cretaceous petroleum system of the southern Persian Gulf basin,” Journal of Petroleum Exploration and Production Technology, Vol. 9, Issue 4, pp. 1-10, 2019. ##
[8]. قربانی قشقایی ا.، مطالعه و بررسی سنگ چینهای سازند پابده در ناحیه دزفول شمالی، شرکت ملی مناطق نفت خیز جنوب، گزارش پ-4850، 1387. ##
[9]. مطیعی ه.، زمین‌شناسی ایران، زمین‌شناسی نفت زاگرس، سازمان زمین‌شناسی کشور، 1374. ##
[10]. Haynes S. J. and McQuillan H., “Evolution of the Zagros suture zone, southern Iran,” Geological Society of America Bulletin, Vol. 85, No. 5, pp.739-744, 1974. ##
[11]. Motiei H., “Stratigraphy of Zagros,” Treatise on the Geology of Iran, Vol. 60, p. 151, 1993. ##
[12]. Flügel E., “Microfacies of carbonate rocks: analysis, interpretation and application,” Springer, p. 976, 2013. ##
[13]. Peters K. E., Peters K. E., Walters C. C., and Moldowan J. M., “The biomarker guide,” Cambridge University Press. Vol. 1, 2005. ##
[14]. Sofer Z., “Biomarkers and carbon isotopes of oils in the Jurassic Smackover Trend of the Gulf Coast States, USA,” Organic Geochemistry., Vol.12, No. 5, pp. 421-432, 1988. ##
[15]. Longbottom T. L., Hockaday W. C., Boling K. S., Li G., Letourmy Y., Dong H. and Dworkin S. I., “Organic structural properties of kerogen as predictors of source rock type and hydrocarbon potential,” Fuel., No. 184, pp. 792-798, 2016. ##
[16]. Bourbonniere R. A. and Meyers P. A., “Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie,” Limnology and Oceanography., Vol. 41, No. 2, pp. 352-359, 1996. ##
[17]. Kara-Gülbay R., Korkmaz S., Yaylalı-Abanuz G. and Erdoğan M. S., “Organic geochemistry and depositional environment of the Oltu gemstone (Coal) in the Erzurum Area, NE Anatolia, Turkey,” Energy & Fuels, Vol. 32, No. 2, pp. 1451-1463, 2018. ##
[18]. Tissot B.P. and Welte D. H., “Petroleum formation and occurrence,” 2nd ed. Springer-Verlog.New York, 1984. ##
[19]. Peters K. E., Walters C. C. and Moldowan J. M., “Biomarkers: assessment of petroleum source-rock Age and depositional environment,” Encyclopedia of Petroleum Geoscience, pp. 1-11, 2017. ##
[20]. Song J., Littke R., Weniger P., Ostertag-Henning C. and Nelskamp S., “Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe,” International Journal of Coal Geology., No.150, pp. 127-153, 2015. ##
[21]. Ji H., Li S., Greenwood P., Zhang H., Pang X., Xu T., and Shi Q., “Geochemical characteristics and significance of heteroatom compounds in lacustrine oils of the Dongpu Depression (Bohai Bay Basin, China) by negative-ion Fourier transform ion cyclotron resonance mass spectrometry,” Marine and Petroleum Geology., No. 97, pp. 568-591, 2018. ##
[22]. Wang G., Xue Y., Wang D., Shi S., Grice K. and Greenwood P. F., “Biodegradation and water washing within a series of petroleum reservoirs of the Panyu Oil Field,” Organic Geochemistry., No. 96, pp. 65-76, 2016. ##
[23]. Baniasad A., Rabbani A. R., Moallemi S. A., Soleimany B. and Rashidi M., “Petroleum system analysis of the Northwestern part of the Persian Gulf, Iranian sector,” Organic Geochemistry., No. 107, pp. 69-85, 2017. ##
[24]. Jiamo F., Guoying S., Jiayou X., Eglinton G., Gowar A. P., Rongfen J. and Pingan P., “Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments,” Organic Geochemistry, Vol.16, No. 4-6, pp. 769-779, 1990. ##
[25]. Hill R. J., Jarvie D. M., Zumberge J., Henry M. and Pollastro R. M., “Oil and gas geochemistry and petroleum systems of the Fort Worth Basin,” AAPG bulletin, Vol. 91, No. 4, pp. 445-473, 2007. ##
[26]. Takishita K., Chikaraishi Y., Leger M. M. Kim E., Yabuki A., Ohkouchi N. and Roger A. J., “Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen,” Biology Direct., Vol.7, No. 1, pp. 5, 2012. ##
[27]. Yang Z., He S., Li Q., Lin S. and Pan S., “Geochemistry characteristics and significance of two petroleum systems near top overpressured surface in central Junggar Basin, NW China,” Marine and Petroleum Geology., No. 75, pp. 341-355, 2016. ##
[28]. Duan Y., Zheng C., Wang Z., Wu B., Wang C., Zhang H. and Zheng G., “Biomarker geochemistry of crude oils from the Qaidam Basin, NW China,” Journal of Petroleum Geology, Vol. 29, No. 2, pp.175-188, 2006. ##
[29]. Moldowan J. M., Dahl J., Huizinga B. J., Fago F. J., Hickey L. J., Peakman T. M. and Taylor D. W., “The molecular fossil record of oleanane and its relation to angiosperms,” Science., Vol. 265, No. 5173, pp. 768-771, 1994. ##
[30]. Mackenzie A. S., Hoffmann C. F. and Maxwell J. R., “Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—III. Changes in aromatic steroid hydrocarbons,” Geochimica et Cosmochimica Acta., Vol. 45, No. 8, pp.1345-1355, 1981. ##
[31]. Hughes W. B., Holba A. G. and Dzou L. I., “The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks,” Geochimica et Cosmochimica Acta., Vol. 59, No. 17, pp. 3581-3598, 1995. ##
[32]. Gao G., Yang S., Zhang W., Wang Y., Gang W. and Lou G., “Organic geochemistry of the lacustrine shales from the Cretaceous Taizhou Formation in the Gaoyou Sag, northern Jiangsu Basin,” Marine and Petroleum Geology, No. 89, pp. 594-603, 2018. ##
[33]. Alizadeh B., Maroufi K. and Fajrak M., “Hydrocarbon reserves of Gachsaran oilfield, SW Iran: Geochemical characteristics and origin,” Marine and Petroleum Geology., No. 92, pp. 308-318, 2018. ##
[34]. Hunt J. M., “Petroleum geochemistry and Geology,” 2nd ed. W. H, Freeman and Company, New York., p. 743, 1996. ##
[35]. Huang W. Y. and Meinschein W. G., “Sterols as ecological indicators,” Geochimica et cosmochimica Acta, Vol. 43, No. 5, pp.739-745, 1979. ##
[36]. Ourisson G., Albrecht P. and Rohmer M., “The microbial origin of fossil fuels,” Scientific American., Vol. 251, No. 2, pp. 44-51, 1984. ##
[37]. Radke M., “The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons,” Advances Organic Geochemistry, Vol. 1981, pp. 504-512, 1983. ##
[38]. Xiao H., Li M., Liu J., Mao F., Cheng D. and Yang Z., “Oil-oil and oil-source rock correlations in the Muglad Basin, Sudan and South Sudan: New insights from molecular markers analyses,” Marine and Petroleum Geology, 2019. ##
[39]. El Diasty W. S., El Beialy S. Y., Peters K. E., Batten D. J., Al-Beyati F. M., Mahdi A. Q. and Haseeb M. T., “Organic geochemistry of the middle-upper jurassic naokelekan formation in the ajil and balad oil fields, Northern Iraq,” Journal of Petroleum Science and Engineering., No. 166, pp. 350-362, 2018. ##
[40]. Radke M., “Organic geochemistry of aromatic hydrocarbons. In: Brooks,” J. and Welte, D.H., (Eds.), Advances in Petroleum Geochemistry. Academic Press London, No. 2, pp. 141-217, 1987. ##