بررسی پارامترهای مؤثر بر عملکرد فرآیند نمک‌زدای الکترواستاتیک به‌کمک شبکه عصبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آزمایشگاه فرآیندهای جداسازی و نانوفناوری، دانشکده فنی کاسپین، پردیس دانشکده‌های فنی دانشگاه تهران، ایران

2 گروه فناوری‌های تبدیل و بهینه‌سازی، پژوهشکده توسعه فناوری‌های پالایش، پژوهشگاه صنعت نفت، تهران، ایران

3 دانشکده مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران، ایران

چکیده

آنچه تحت عنوان نفت خام از چاه‌های نفتی استخراج می‌شود؛ در حقیقت امولسیونی از ذرات ریز آب با اندازه کوچک‌تر از تقریباً μm 100 است که در فاز نفتی پراکنده شده است. این امولسیون که امولسیونی پایدار است؛ در‌صورتی‌که به دو فاز آب و نفت تفکیک نشود؛ موجب بروز مشکلات جدی در فرآیند انتقال و پالایش نفت خام خواهد شد. به منظور جداسازی آب و ترکیبات یونی همراه آن از نفت خام، واحدهای نمک‌زدایی که در آن‌ها از میدان الکتریکی با شدت بالا استفاده می‌شود، مورد استفاده قرار می‌گیرند. بازدهی این واحدها به متغیرهای متعددی وابسته است. در این پژوهش، اثر پارامترهای مختلف بر میزان نمک همراه نفت خروجی یک واحد نمک‌زدا مطالعه شده است. بدین منظور، شبکه عصبی بهینه شده به‌وسیله الگوریتم فاخته مورد استفاده قرار گرفته است. به کمک نتایج شبیه‌سازی، مقادیر بهینه دما، درصد آب تزریقی، افت فشار در شیر اختلاط و غلظت تعلیق‌شکن معین شده است؛ به‌طوری‌که این مقادیر به‌ترتیب برابر با C° 79، 25/3%، bar 85/0 و ppm 90 است. با توجه به اهمیت نوع تعلیق‌شکن، به منظور بررسی اثر آن بر سایر پارامترها، در مطالعه صورت گرفته، از چهار نوع تعلیق‌شکن متفاوت استفاده شده است. نتایج حاصل نشان می‌دهد که افزایش آب و رسوبات همراه نفت و وزن مخصوص نفت خام، بر بازدهی فرآیند نمک‌زدایی تأثیر منفی دارند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Parameters Affecting the Performance of Electrostatic Desalting Process Using Neural Network

نویسندگان [English]

  • Hamed Kazemi Golbaghi 1
  • Mehdi Mohammadi 2
  • Seyed Hamed Mousavi 1
  • Moosavian Seyed Mohammad Ali 3
1 Separation Processes and Nanotechnology Lab, Faculty of Caspian, College of Engineering, University of Tehran, Iran
2 Electrocoalescers Research Laboratory, Petroleum Refining and Processing Technology Development Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
3 Schoole of Chemical Engineering, College of Engineering, University of Tehran, Iran
چکیده [English]

Dispersed water-in-oil as a stable emulsion causes numerous problems in extraction, transportation and refining of the crude oil. In the most desalting units, high voltage electrical field is utilized to separate water and ionic components from the crude oil. The efficiency of desalting units depends on operational conditions and hence in this study the result of several parameters on salt content of output crude oil in a desalting unit was considered for both theoretical and experimental studies. For this goal, optimized artificial neural network (ANN) using cuckoo optimization algorithm was applied to simulate the process. The optimum temperature, water  injection rate, retention time, differential pressure of mixing valves and injection rate of demulsifier were predicted by the consequences of simulation as the optimum value for each of the parameters was respectively equal to 79 ppm, 3.25%, 8.5 bar and 90 ppm. Then, because of the significant effect of the demulsifiers, the variation of each parameter was evaluated in the presence of four types of demulsifier separately. The results showed that an increase in the basic sediment and water content (BS&W) and specific gravity of crude oil has adverse effects on desalting process efficiency.
 

کلیدواژه‌ها [English]

  • Water-in-Oil Emulsion
  • Electrostatic Demulsification
  • Artificial Neural Networks
  • Cuckoo Optimization
[1]. Zeidani K, Bahadori A (2006) Analysis of crude oil electrostatic desalters performance, Journal of Canadian Petroleum Technology, 45: 05. ##
[2]. Mousavichoubeh M, Ghadiri M, Shariaty-Niassar MJCE, Intensification PP (2011) Electro-coalescence of an aqueous droplet at an oil–water interface, Chemical Engineering and Processing: Process Intensification, 50, 3: 338-344. ##
[3]. Mohammadi M, Shahhosseini S, Bayat M (2013) Numerical prediction of the electrical waveform effect on electrocoalescence kinetic, Chemical Engineering Research and Design, 91, 5: 904-918. ##
[4]. Kralova I, Sjöblom J, Øye G, Simon S, Grimes BA, Paso K (2011) Heavy crude oils/particle stabilized emulsions, Advances in Colloid and Interface Science, 169, 2: 106-127. ##
[5]. Frising T, Noïk C, Dalmazzone C (2006) The liquid/liquid sedimentation process: from droplet coalescence to technologically enhanced water/oil emulsion gravity separators: a review, Journal of Dispersion Science and Technology, 27, 7:  1035-1057. ##
[6]. O. Urdahl, Nordstad K, Berry P, Wayth N, Williams T, Bailey A, Thew M (2001) Development of a new, compact electrostatic coalescer concept, Production and Facilities, 1, 16: 01, 4-8. ##
[7]. Eow J S, M. Ghadiri A, Sharif O, Williams TJ (2001) Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding, Chemical Engineering Journal, 84, 3: 173-192. ##
[8]. Stewart M, Arnold K (2008) Emulsions and oil treating equipment: Selection, sizing and troubleshooting, Elsevier. ##
[9]. Kokal SL (2005) Crude oil emulsions: A state-of-the-art review, SPE Production and Facilities, 20, 01: 5-13. ##
[10]. Fetter Pruneda E, Borrell Escobedo ER, Garfias FJ, Vázquez (2005) Optimum temperature in the electrostatic desalting of Maya crude oil, Journal of the Mexican Chemical Society, 49, 1: 14-19. ##
[11]. Eow JS, Ghadiri M (2002) Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology, Chemical Engineering Journal, 85, 2-3: 357-368. ##
[12]. Sjoblom J (2001) Encyclopedic handbook of emulsion technology. CRC Press. ##
[13]. Vafajoo L, Ganjian K, Fattahi M (2012) Influence of key parameters on crude oil desalting: An experimental and theoretical study, Journal of Petroleum Science and Engineering, 90: 107-111. ##
[14]. Lee CM, Sams GW, Wagner J (2001) Power consumption measurements for ac and pulsed dc for electrostatic coalescence of water-in-oil emulsions, Journal of Electrostatics, 53, 1: 1-24. ##
[15]. Lundgaard L, Berg G, Ingebrigtsen S, Atten P (2006) Electrocoalescence for oil-water separation: Fundamental Aspects, Surfactant-science. ##
[16]. Lundgaard LE, Berg G, Ingebrigtsen S, Atten P (2005) Electrocoalescence for oil–water separation: fundamental aspects, in Emulsions and emulsion stability: CRC Press, 569-612. ##
[17]. Aryafard E, Farsi M, Rahimpour M, S Raeissi (2016) Modeling electrostatic separation for dehydration and desalination of crude oil in an industrial two-stage desalting plant, Journal of the Taiwan Institute of Chemical Engineers, 58: 141-147. ##
[18]. Zhang L, Chen J, Cai X, Huang S, Ji Y (2017) Research on electrostatic coalescence of water-in-crude-oil emulsions under high frequency/high Voltage AC electric field based on electro-rheological method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520: 246-256. ##
[19]. Mousavichoubeh M, Ghadiri M, Shariaty-Niassar M (2011) Electro-coalescence of an aqueous droplet at an oil–water interface, Chemical Engineering and Processing: Process Intensification, 50, 3: 338-344. ##
[20]. Mhatre S, Simon S, Sjöblom J, Xu Z (2018) Demulsifier assisted film thinning and coalescence in crude oil emulsions under DC electric fields, Chemical Engineering Research and Design, 134, 117-129. ##
[21]. Liu D, Li C, Yang F, Sun G, You J, Cui K (2019) Synergetic effect of resins and asphaltenes on water/oil interfacial properties and emulsion stability, Fuel, 252: 581-588. ##
[22]. Hadidi H, Kamali R, Manshadi MKD (2020) Numerical simulation of a novel non-uniform electric field design to enhance the electrocoalescence of droplets, European Journal of Mechanics - B/Fluids, 80: 206-215. ##
[23]. Mahdi K, Gheshlaghi R, Zahedi G, Lohi A (2008) Characterization and modeling of a crude oil desalting plant by a statistically designed approach, Journal of Petroleum Science and Engineering, 61, 2-4: 116-123. ##
[24]. Abrahart R, Kneale PE, See LM (2004) Neural networks for hydrological modeling, CRC Press. ##
[25]. Nawi NM, Khan A, Rehman MZ (2013) A new back-propagation neural network optimized with cuckoo search algorithm, In International Conference on Computational Science and its Applications, 413-426. ##
[26]. Golbaghi VK, Shahbazian M, Moslemi B, Rashed G (2017) Rolling element bearing condition monitoring based on vibration analysis using statistical parameters of discrete wavelet coefficients and neural networks, International Journal of Automation and Smart Technology, 7, 2: 61-69. ##
[27]. Rajabioun R (2011) Cuckoo Optimization Algorithm, Applied Soft Computing, 11, 8: 5508-5518. ##
[28]. Wu F, Li H (2012) Study on the divided-wall electric desalting technology for Suizhong crude oil, Desalination, 307: 20-25. ##
[29]. Mohammadi M, Mohammadi F (2016) Parametric study on electrical conductivity of crude oils; basis experimental data, Petroleum and Coal, 58: 6. ##
[30]. W Kang,  Yin X, Yang H, Zhao Y, Huang Z, Hou X, Sarsenbekuly B, Zhu Z, Wang P, Zhang X, Geng J (2018) Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions, Colloids and Surfaces A: Physicochemical and Engineering aspects, 545: 197-204. ##
[31]. JF Mitre, Lage PL, Souza MA, Silva E, Barca LF, Moraes AO, Coutinho RC, Fonseca EF (2014) Droplet breakage and coalescence models for the flow of water-in-oil emulsions through a valve-like element, Chemical Engineering Research and Design, 92, 11: 2493-2508. ##