تهیه و مشخصه‌یابی غشای مرکب پلی دی متیل سیلوکسان PDMS بر پایۀ چارچوب فلز-آلی UiO-66 به‌منظور استفاده در فرآیند گوگردزدایی از بنزین به‌روش تراوش تبخیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

2 دانشکده مهندسی شیمی و نفت و گاز، دانشگاه علم و صنعت، تهران، ایران

چکیده

در این پژوهش، از روش غشایی تراوش تبخیری برای گوگردزدایی از بنزین استفاده شده است. از تیوفن به‌عنوان معرف گوگرد و از نرمال هپتان به‌عنوان معرف ترکیبات هیدروکربنی در بنزین استفاده شد. غشاهای کامپوزیتی زمینه مرکب با لایة فعال پلی دی متیل سیلوکسان حاوی نانوذرات چارچوب فلز- آلی UiO-66 بر پایة غشای متخلخل پلی ونیلیدن فلوراید ساخته شد. از آزمون‌های میکروسکوپ الکترونی روبشی، طیف فروسرخ تبدیل فوریه، و پراش پرتوی ایکس برای مشخصه‌یابی نانوذرات و غشاهای سنتز شده استفاده شد. اثر افزودن نانوذرات برروی عملکرد غشاها در فرآیند تراوش تبخیری بررسی گردید. عملکرد بهینه برای غشاها حالتی است که درصد وزنی UiO-66 نسبت به پلی دی متیل سیلوکسان wt.% 8% باشد که در این حالت شار kg/m2 h 73/10 و فاکتور تغلیظ 96/3 می‌باشد که در مقایسه با حالت غشای پلی دی متیل سیلوکسان خام، شار 90% و فاکتورتغلیظ 27% افزایش یافته است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Preparation and Characterization of Mixed-matrix Composite PDMS Membrane Based on UiO-66 Metal-organic Framework for the Desulfurization of Gasoline by Pervaporation Method

نویسندگان [English]

  • Hamid Heydari Pebdeni 1
  • Zahra Moradi 2
  • Seyyed Abbas Musavi 1
1 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
2 Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In this study, the pervaporation method was used for the desulfurization of gasoline. Thiophene was used as a sulfur agent and n-heptane as a representative of hydrocarbon compounds in gasoline. Hybrid membranes were fabricated with active layers composed of polydimethylsiloxane (PDMS) and metal-organic framework UiO-66, together with support layers composed of polyvinylidene fluoride (PVDF). Scanning electron microscopy (SEM), Fourier transform infrared spectrum (FTIR) and X-ray diffraction (XRD) were used to characterize nanoparticles and synthesized membranes. Furthermore, the effect of UiO-66 incorporation on swelling and pervaporation performance of the hybrid membranes was evaluated. The optimal performance was achieved when the weight fraction of UiO-66 to PDMS was 8% with a flux of 10.73 kg.m-2h-1 (increased by 90% compared with the PDMS control membrane) and an enrichment factor of 3.96 (increased by 27% compared with the PDMS control membrane).
 

کلیدواژه‌ها [English]

  • Pervaporative Desulfurization
  • Mix-Matrix Membrane
  • Metal-Organic Framework
  • PDMS Membrane
  • UiO-66 Nanoparticle
[1]. Xu R, Zou L, Lin P, Zhang Q, Zhong J (2016) Pervaporative desulfurization of model gasoline using PDMS/BTESE-derived organosilica hybrid membranes, Fuel Processing Technology, 154: 188–196.##
[2]. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels, Biotechnology Advances, 25, 6: 570–596. ##
[3]. Stanislaus A, Marafi A, Rana M S (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production, Catalysis Today, 153, 1–2: 1–68. ##
[4]. Cao R, Zhang X, Wu H, Wang J, Liu X, Jiang Z (2011) Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core–shell microspheres, Journal of hazardous materials, 187, 1–3: 324–332. ##
[5]. Qi R, Wang Y, Chen J, Li J, Zhu S (2007) Pervaporative desulfurization of model gasoline with Ag2O-filled PDMS membranes, SPE Separation and Purification Technology, 57, 1: 170–175. ##
[6]. White L S (2006) Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes, Journal of Membrane Science, 286, 1–2: 26–35. ##
[7]. Yang D, Yang S, Jiang Z, Yu S, Zhang, J, Pan F, Yang J (2015) Polydimethyl siloxane–graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance, Journal of Membrane Science, 487: 152–161. ##
[8]. Mortaheb H R, Ghaemmaghami F, Mokhtarani B (2012) A review on removal of sulfur components from gasoline by pervaporation, Chemical Engineering Research and Design, 90, 3: 409–432. ##
[9]. Chung T S, Jiang L Y, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 32, 4: 483–507. ##
[10]. Qi R, Wang Y, Chen J, Li J, Zhu S (2007) Removing thiophenes from n-octane using PDMS–AgY zeolite mixed matrix membranes, Journal of Membrane Science, 295, 1–2: 114–120. ##
[11]. Lin L, Zhang Y, Li H (2010) Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species, Journal of Colloid and Interface Science, 350, 1: 355–360. ##
[12]. Li B, Xu D, Jiang Z, Zhang X, Liu W, Dong X (2008) Pervaporation performance of PDMS-Ni2+ Y zeolite hybrid membranes in the desulfurization of gasoline, Journal of Membrane Science, 322, 2: 293–301. ##
[13]. Hou Y, Liu M, Huang Y, Zhao L, Wang J, Cheng Q, Niu Q (2017) Gasoline desulfurization by a TiO2-filled ethyl cellulose pervaporation membrane, Journal of Applied Polymer Science, 134: 6. ##
[14]. Yang D, Yang S, Jiang Z, Yu S, Zhang J, Pan F, Yang J (2015) Polydimethyl siloxane–graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance, Journal of Membrane Science, 487: 152–161. ##
[15]. Islam D (2017) Poly (Dimethylsiloxane) (PDMS)/Carbon Nanotube (CNT) Nanocomposite Membranes: Preparation and Characterizations, Lamar University-Beaumont. ##
[16]       Yu S, Jiang Z, Ding H, Pan F, Wang B, Yang J, Cao X (2015) Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC, Journal of Membrane Science, 481, 73–81. ##
[17]. Han X, Hu T, Wang Y, Chen H, Wang Y, Yao R, Li X (2019) A water-based mixing process for fabricating ZIF-8/PEG mixed matrix membranes with efficient desulfurization performance, Separation and Purification Technology, 214: 61–66. ##
[18]. Yu S, Pan F, Yang S, Ding H, Jiang Z, Wang B, Cao X (2015) Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline, Chemical Engineering Science, 135: 479–488. ##
[19]. Wu F, Cao Y, Liu H, Zhang X (2018) High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation, Journal of Membrane Science, 556: 54–65. ##
[20]. Mahdavi H, Ahmadian-Alam L, Molavi H (2015) Grafting of sulfonated monomer onto an amino-silane functionalized 2-aminoterephthalate metal- organic framework via surface-initiated redox polymerization: proton-conducting solid electrolytes, Polymer International, 64, 11: 1578–1584. ##
[21]. Sarango L, Paseta L, Navarro M, Zornoza B, Coronas J (2018) Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration, Journal of Industrial and Engineering Chemistry, 59: 8–16. ##
[22]. Ozen H A, Ozturk B (2019) Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals, Separation and Purification Technology, 211: 514–521. ##
[23]. Molavi H, Shojaei A (2019) Mixed-matrix composite membranes based on UiO-66-derived MOFs for CO2 separation, ACS applied materials and interfaces, 11, 9:. 9448–9461. ##
[24]. Zhao D L, Yeung W S, Zhao Q, Chung T S (2020) Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination, Journal of Membrane Science, 118039. ##
[25]. DeCoste J B, Peterson G W, Schindler B J, Killops K L, Browe M A, Mahle J J (2013) The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66, Journal of Materials Chemistry A, 1, 38: 11922–11932. ##
[26]. Abid H R, Pham G H, Ang H M, Tade M O, Wang S (2012) Adsorption of CH4 and CO2 on Zr-metal organic frameworks, Journal of Colloid and Interface Science, 366, 1: 120–124. ##
[27]. Liu H X, Wang N, Zhao C, Ji S, Li J R (2018) Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures—A review, Journal of Chemical Engineering, 26, 1: 1–16. ##
[28]. Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, Journal of the American Chemical Society, 130, 42, 13850–13851: 2008. ##
[29]. Hasan Z, Khan N A, Jhung S H (2016) Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks, Chemical Engineering Journal, 284: 1406–1413. ##
[30]. Yang Q, Zhao Q, Ren S, Chen Z, Zheng H (2017) Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol, Chemical Engineering Journal 323, 74–83. ##
[31]. Efimenko K, Wallace W E, Genzer J (2002) Surface modification of Sylgard-184 poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment, Journal of colloid and interface science 254, 2: 306–315. ##