اصلاح گروه‌بندی وینلند براساس کیفیت مخزنی و پارامترهای تولیدی در سنگ‌های کربناته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده زمین‌شناسی، پردیس علوم دانشگاه تهران، ایران/پژوهشکده مهندسی نفت، پژوهشگاه صنعت نفت، تهران، ایران

2 دانشکده زمین‌شناسی، پردیس علوم دانشگاه تهران، ایران

چکیده

گستردگی تنوع در سنگ‌های کربناته، ارتباط بین پارامترهای مخزنی و تولیدی با سنگ و تعمیم آن به مخزن را سخت می‌نماید. بنابراین جهت کاهش تنوع، گروه‌های سنگی مختلفی با لحاظ پارامترهای لیتولوژیکی، منفذی و خواص پتروفیزیکی به‌وجود آمده‌اند. در این گروه‌بندی‌ها به پارامترهای جریان سیال توجه مطلوبی صورت نمی‌گیرد و همچنین برخی از این گروه‌بندی‌ها دارای پیچیدگی زیادی هستند که استفاده از آنها را سخت می‌نماید. گروه‌بندی با ورودی‌های داده کم و در عین حال لحاظ شدن خواص جریان سیال در آن، می‌تواند نقش به‌سزایی در مطالعات سنگ‌های کربناته ایفاء نماید. با این هدف، در این مطالعه، علاوه‌بر بررسی کیفیت مخزنی در گروه‌بندی وینلند، پارامترهای جریان سیال نیز به‌عنوان پارامترهای تولیدی و دینامیکی مورد بررسی قرار گرفت. در این جهت، گروه‌بندی وینلند با استفاده از داده‌های پتروفیزیکی 779 نمونه سنگ کربناته از سازندهای ایلام، سروک و فهلیان تعیین گردیده و سپس مطلوبیت گروه‌بندی با استفاده از پارامترهای لیتولوژیکی، پتروفیزیکی، منفذی و دینامیکی مورد بررسی قرار گرفت. بررسی‌ها نشان داد با اصلاح مرزهای گروه‌بندی وینلند، ارتباطات منظمی با پارامترهای ذکر شده ایجاد می‌گردد. نتایج نشان داد با اینکه با افزایش شماره گروه، خواص مخزنی بهبود نشان می‌دهد، خواص دینامیکی این روند را نشان نمی‌دهد و در مجموع گروه‌های میانی مطلوب‌ترین بخش گروه‌بندی از لحاظ کیفیت مخزنی و پارامترهای تولیدی است. سوق گروه‌بندی استاتیکی به سمت گروه‌بندی دینامیکی و همچنین استفاده از نسبت ضریب بازیافت به اشباع آب غیرقابل کاهش به‌عنوان پارامتر کلیدی جهت بررسی کیفیت تولید، پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modification of Winland Rock Typing Based on Reservoir Quality and Production Parameters in Carbonate Rocks

نویسندگان [English]

  • Kazem Saadat 1
  • Hossain Rahimpour-Bonab 2
1 School of Geology, College of Science, University of Tehran, Iran\ Petroleum Engineering Research Division, Research Institute of Petroleum Industry (Iran), Tehran, Iran
2 School of Geology, College of Science, University of Tehran, Iran
چکیده [English]

The high heterogeneity in carbonate rocks makes it impossible to relate reservoir and production parameters to the rock properties and generalize it to the reservoir. Hence, in order to reduce diversity, different rock types have been created based on various factors such as lithological parameters, porosity, and petrophysical properties. Fluid flow parameters are not adequately addressed in these classifications, and some of these rock classifications are overly complex, rendering them challenging to utilize. Considering the features of fluid flow in classification, utilizing minimal data input can have a major impact on carbonate rock studies. In this study, the focus of investigation is on analyzing the reservoir quality of Winland throat radius rock typing, while also exploring fluid flow parameters as production and dynamic parameters. In this regard, using the petrophysical data of 779 carbonate rock samples from the Ilam, Sarvak and Fahliyan formations, the Winland rock typing was determined, and then the appropriateness of the rock typing was investigated using lithological, petrophysical, pore and dynamic parameters. Investigations showed that by correcting the boundaries of the Winland rock typing, regular connections are established with the mentioned parameters. The results showed that although the reservoir properties show improvement with the increase in the group number, the dynamic properties do not follow this trend. Overall, the middle groups are the most desirable part of the rock typing in terms of reservoir quality and production parameters. The shift of static rock typing towards dynamic rock typing and also the use of the ratio of recovery factor to irreducible water saturation are as a key parameters to check production quality which are recommended.

کلیدواژه‌ها [English]

  • Rock Typing
  • Winland
  • Reservoir Quality
  • Recovery Factor. Production Parameters
  • Carbonate Rocks
[1]. Ham, W. E., and Pray, L. C. (1962). Modern concepts and classifications of carbonate rocks. ##
[2]. Choquette, P. W., and Pray, L. C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG bulletin, 54(2): 207-250, doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D.##
[3]. Focke, J., and Munn, D. (1987). Cementation exponents in Middle Eastern carbonate reservoirs. SPE formation evaluation, 2(02): 155-167, doi.org/10.2118/13735-PA.##
[4]. Laubach, S. E. (1988). Subsurface fractures and their relationship to stress history in East Texas basin sandstone. Tectonophysics, 156(1-2): 37-49, doi.org/10.1016/0040-1951]88[90281-8.##
[5]. Akbar, M., Vissapragada, B., Alghamdi, A. H., Allen, D., Herron, M., Carnegie, A., Dutta, D., Olesen, J.R., Chourasiya, R.D., Logan, D. and Stief, D. and Saxena, K. (2000). A snapshot of carbonate reservoir evaluation, Oilfield review, 12(4): 20-21.##
[6]. Laubach, S. E., Reed, R. M., Gale, J. F., Ortega, O. J., and Doherty, E. H. (2002). Fracture characterization based on microfracture surrogates, Pottsville Sandstone, Black Warrior basin, Alabama.##
[7]. Lucia, F. J. (2007). Limestone reservoirs. carbonate reservoir characterization, An Integrated Approach, 181-215.##
[8]. Tariq, Z., Mahmoud, M., Al-Youssef, H., & Khan, M. R. (2020). Carbonate rocks resistivity determination using dual and triple porosity conductivity models. Petroleum, 6(1), 35-42, doi.org/10.1016/j.petlm.2019.04.005.##
[9]. Lucia, F. J. (1995). Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG bulletin, 79(9), 1275-1300, doi.org/10.1306/7834D4A4-1721-11D7-8645000102C1865D.##
[10]. Lucia, F. J. (1999). Carbonate reservoir characterization, Springer, Berlin Heidelberg New York, 1–226.##
[11]. Kerans, C., Lucia, F. J., and Senger, A. R. (1994). Integrated characterization of carbonate ramp reservoirs using permian san andres formation outcrop analogs, AAPG bulletin, 78(2): 181-216, doi.org/10.1306/BDFF905A-1718-11D7-8645000102C1865D.##
[12]. Jennings Jr, J. W., Ruppel, S. C., & Ward, W. B. (2000). Geostatistical analysis of permeability data and modeling of fluid-flow effects in carbonate outcrops, SPE Reservoir Evaluation & Engineering, 3(04): 292-303., doi.org/10.2118/65370-PA.##
[13]. Moore, C. H., and Wade, W. J. (2013). Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework. Newnes.##
[14]. Mehrabi, H., Rahimpour-Bonab, H., Hajikazemi, E., and Jamalian, A. (2015). Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf, Iran. Facies, 61, 1-24.##
[15]. Rosid, M. S., Haikel, S., & Haidar, M. W. (2019). Carbonate reservoir rock type classification using comparison of Naïve Bayes and Random Forest method in field “S” East Java. In AIP Conference Proceedings, 2168, 1, AIP Publishing, doi.org/10.1063/1.5132446.##
[16]. Lian, P. Q., Tan, X. Q., Ma, C. Y., Feng, R. Q., and Gao, H. M. (2016). Saturation modeling in a carbonate reservoir using capillary pressure based saturation height function: a case study of the Svk reservoir in the Y Field, Journal of Petroleum Exploration and Production Technology, 6(1): 73-84.##
[17]. Ma, Y. Z., and Zhang, X. (2019). Quantitative geosciences: Data analytics, geostatistics, reservoir characterization and modeling, 640, Cham: Springer International Publishing.##
[18]. Lichaa, P. M., Alpustun, H., Abdul, J. H., Nofal, W. A., Fuseni, A. B., & Worthington, P. F. (1992). Wettability evaluation of a carbonate reservoir rock, Advances in Core Evaluation III Reservoir Management.##
[19]. Cuddy, S., Allinson, G., & Steele, R. (1993, June). A simple, convincing model for calculating water saturations in Southern North Sea gas fields. In SPWLA Annual Logging Symposium, SPWLA-1993, SPWLA.##
[20]. Al Waili, I. H. (2009, October). Developing generalised capillary pressure curves and saturation height function for Shuaiba carbonate reservoirs in field A. In SPE Annual Technical Conference and Exhibition?, SPE-136191, SPE, doi.org/10.2118/136191-STU.##
[21]. Heide, M. (2008). Dispersion and two-phase flow in material from different carbonate pore classes (Master’s thesis, The University of Bergen).##
[22]. Gomes, J. S., Ribeiro, M. T., Strohmenger, C. J., Negahban, S., & Kalam, M. Z. (2008, November). Carbonate reservoir rock typing–the link between geology and SCAL, In Abu Dhabi International Petroleum Exhibition and Conference, SPE-118284, SPE, doi.org/10.2118/118284-MS. ##
[23]. Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., and Izadi-Mazidi, E. (2012). Flow unit distribution and reservoir modelling in cretaceous carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran. Journal of Petroleum Geology, 35(3): 213-236, doi.org/10.1111/j.1747-5457.2012.00527.x.##
[24]. Lehmann, C. T., Hosany, K. I. A., Cobb, D. O., and Al-Hendi, A. (2008, November). Rock-Typing of Upper Jurassic (Arab) Carbonates, Offshore Abu Dhabi, In Abu Dhabi International Petroleum Exhibition and Conference, SPE-117889, doi.org/10.2118/117889-MS. ##
[25]. Aliakbardoust, E., and Rahimpour-Bonab, H. (2013). Integration of rock typing methods for carbonate reservoir characterization, Journal of Geophysics and Engineering, 10(5), 055004, doi.org/10.1088/1742-2132/10/5/055004.##
[26]. Aliakbardoust, E., and Rahimpour-Bonab, H. (2013). Integration of rock typing methods for carbonate reservoir characterization. Journal of Geophysics and Engineering, 10(5), 055004, doi.org/10.2118/9382-MS.##
[27]. Pittman, E. D. (1992). Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone (1). AAPG bulletin, 76(2): 191-198.##
[28]. Rezaee, M. R., Jafari, A., and Kazemzadeh, E. (2006). Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks, Journal of Geophysics and Engineering, 3(4): 370-376, doi.org/10.1088/1742-2132/3/4/008.##
[29]. Hollis, C., Vahrenkamp, V., Tull, S., Mookerjee, A., Taberner, C., & Huang, Y. (2010). Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies. Marine and Petroleum Geology, 27(4), 772-793, doi:10.1016/j.marpetgeo.2009.12.002.##
[30]. Abbaszadeh, M., Koide, N., & Murahashi, Y. (2000). Integrated characterization and flow modeling of a heterogeneous carbonate reservoir in Daleel Field, Oman, SPE Reservoir Evaluation & Engineering, 3(02): 150-159, doi.org/10.2118/62514-PA.##
[31]. Collins, J. F., Kenter, J. A., Harris, P. M., Kuanysheva, G., & Steffen, D. F. K. (2006). Facies and reservoir-quality variations in the late Visean to Bashkirian outer platform, rim, and flank of the Tengiz buildup, Precaspian Basin, Kazakhstan, doi: 10.1306/1215874M881469.##
[32]. Johnson, K. R., Barnett, A., and Wright, V. P. (2009). An evaluation of existing carbonate pore system classifications and rock-typing approaches (Doctoral dissertation, Department of Earth Science and Engineering, Centre for Petroleum Studies, Imperial College London).##
[33]. Bust, V. K., Majid, A. A., Oletu, J. U., and Worthington, P. F. (2013). The petrophysics of shale gas reservoirs: Technical challenges and pragmatic solutions. Petroleum Geoscience, 19(2): 91-103, doi.org/10.1144/petgeo2012-031.##
[34]. Paterson, L., Painter, S., Zhang, X., and Pinczewski, W. V. (1998). Simulating residual saturation and relative permeability in heterogeneous formations, SPE Journal, 3(03): 211-218, doi.org/10.2118/50938-PA.##
[35]. Kharitontseva, P., Gardiner, A., Tugarova, M., Chernov, D., Maksimova, E., Churochkin, I., & Rukavishnikov, V. (2021). An integrated approach for formation micro-image rock typing based on petrography data: a case study in shallow marine carbonates. Geosciences, 11(6): 235, doi.org/10.3390/geosciences11060235.##
[36]. Lønøy, A. (2006). Making sense of carbonate pore systems. AAPG bulletin, 90(9), 1381-1405, doi.org/10.1306/03130605104.##
[37]. Ahr, W. M. (2011). Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons.##
[38]. Rahimpour-Bonab, H., & Aliakbardoust, E. (2014). Pore facies analysis: incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf. Journal of Geophysics and Engineering, 11(3): 035008, doi:10.1088/1742-2132/11/3/035008.##
[39]. Riazi, Z. (2018). Application of integrated rock typing and flow units identification methods for an Iranian carbonate reservoir, Journal of petroleum science and engineering, 160, 483-497, doi.org/10.1016/j.petrol.2017.10.025.
[40]. Skalinski, M., & Kenter, J. A. (2015). Carbonate petrophysical rock typing: integrating geological attributes and petrophysical properties while linking with dynamic behaviour. Geological Society, London, Special Publications, 406(1): 229-259, doi:10.1144/SP406.6.##
[41]. Tavakoli, V., Rahimpour-Bonab, H., & Sahab Peyghambar Doust, M. (2018). Considering the Importance of Calculating the Winland Method Coefficients in Carbonate Reservoirs, Case Study of Kangan and Dalan Formations, Central Persian Gulf. Journal of Petroleum Research, 28(1-97): 4-14, doi: 10.22078/pr.2017.2717.2256.##
[42]. Winland H. D., (1972). Oil Accumulation in Response to Pore Size Changes, Weyburn Field, Saskatchewan, Amoco Production Research Report No. F72-G-25 197. ##
[43]. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures. ##
[44]. Spearing, M., Allen, T., and McAulay, G. (2001). Review of the Winland R35 method for net pay definition and its application in low permeability sands, In Proceedings of the 2001 International Symposium of the Society of Core Analysts, 63.##
[45]. Jones, S. C., & Roszelle, W. O. (1978). Graphical techniques for determining relative permeability from displacement experiments. Journal of Petroleum Technology, 30(05), 807-817, dx.doi.org/10.2118/6045-PA.##
[46]. Johnson, E. F., Bossler, D. P., & Bossler, V. N. (1959). Calculation of relative permeability from displacement experiments, Transactions of the AIME, 216(01): 370-372, doi.org/10.2118/1023-G.##
[47]. Ahmed, T. (2006). Relative permeability concepts ]chapter 5 (reservoir engineering handbook. 3rd ed. Elsevier. 288-330.##
[48]. Jennings, J. B. (1987). Capillary pressure techniques: application to exploration and development geology. AAPG Bulletin, 71(10), 1196-1209.##
[49]. Kianinejad, A., and DiCarlo, D. A. (2016). Three-phase oil relative permeability in water-wet media: A comprehensive study, Transport in Porous Media, 112, 665-687, doi:10.1007/s11242-016-0669-z.##
[50]. Medina, C. R. (2019). Influence of Porosity, Permeability, and Pore Size Distribution on Storability, Injectivity, and Seal Efficiency of Carbonate Reservoirs and Shale Caprock: A Multi-Technique Approach for Geologic Carbon Sequestration (Doctoral dissertation, Indiana University). ##
[51]. Thomeer, J. H. M. (1960). Introduction of a pore geometrical factor defined by the capillary pressure curve, Journal of Petroleum Technology, 12(03): 73-77, doi:10.2118/1324-G.##
[52]. Rangel-German, E. R., & Kovscek, A. R. (2002). Experimental and analytical study of multidimensional imbibition in fractured porous media, Journal of Petroleum Science and Engineering, 36(1-2): 45-60, doi.org/10.1016/S0920-4105(02)00250-4 .##
[53]. Clerke, E. A. (2009). Permeability, relative permeability, microscopic displacement efficiency and pore geometry of m_1 bimodal pore systems in Arab D Limestone. SPE Journal, 14(03): 524-531, doi: 10.2118/105259-PA.##
[54]. Zhaojie, S. O. N. G., Zhiping, L. I., Fengpeng, L. A. I., Gang, L. I. U., and Huohua, G. A. N. (2013). Derivation of water flooding characteristic curve for high water-cut oilfields, Petroleum Exploration and Development, 40(2), 216-223, doi.org/10.1016/S1876-3804(13)60025-7##
[55]. Jun, L., Kai, K., Xiaodong, P., Yan, L., and Lifu, J. (2016). Application and study on relationship between relative permeability ratio and water saturation curve, International Journal of Oil, Gas and Coal Engineering, 12(1): 24-29, doi:10.11648/j.ogce.20160403.11.##
[56]. Aggelopoulos, C. A., & Tsakiroglou, C. D. (2008). The effect of micro-heterogeneity and capillary number on capillary pressure and relative permeability curves of soils, Geoderma, 148(1): 25-34, doi.org/10.1016/j.geoderma.2008.08.011.##
[57]. Oh, J., Kim, K. Y., Han, W. S., Park, E., & Kim, J. C. (2015). Migration behavior of supercritical and liquid CO2 in a stratified system: Experiments and numerical simulations. Water Resources Research, 51(10): 7937-7958, doi.org/10.1002/2015WR017022.##
[58]. Ding, M., Yuan, F., Wang, Y., Xia, X., Chen, W., & Liu, D. (2017). Oil recovery from a CO2 injection in heterogeneous reservoirs: The influence of permeability heterogeneity, CO2-oil miscibility and injection pattern. Journal of Natural Gas Science and Engineering, 44, 140-149, doi: 10.1016/j.jngse.2017.04.015.##
[59]. Al-Bayati, D., Saeedi, A., Myers, M., White, C., and Xie, Q. (2019). Insights into immiscible supercritical CO2 EOR: An XCT scanner assisted flow behaviour in layered sandstone porous media. Journal of CO2 Utilization, 32, 187-195, doi.org/10.1016/j. jcou. 2019.04.002.##